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Abstract  

Generalisations of Weyl's lemma are discussed. In order to secure the compatibility of 
the spinor field equations, the generalisations may not be arbitrary. It is shown that a 
contracted Weyl lemma must be valid. This lemma 'saves' the duality between the 
Lorentz covariant and the Einstein covariant representation of the equation of con- 
tinuity. The meaning of Weyl's lemma and its generalisations is discussed in terms of 
the fibre bundle theory. 

For  the Lorentz covariant representation of  spinor field equations and 
thus for the description of  the influence of the gravitational field on the 
dynamics of  Fermi particles, in general relativity the validity of Weyl's 
lemma is assumed; i.e. covariant constance of  the metric spinors is 
postulated (Weyl, 1929). The supposition of Weyl's lemma enables the 
use of  the formalism of fibre bundles for the representation of spinors in 
Riemann-Einstein spaces (Treder & Borzeszkowski, 1971). 

The validity of Weyl's lemma is primarily a physical question, however; 
in fact, Weyl's lemma asserts that the tensorial quantities formed by 
fusion of spinors obey the transport laws for genuine tensors following 
from the covariance principle. From this we see that, physically speaking, 
Weyl's lemma says that the Bose particles formed by fusion of Fermi 
particles experience the same geometrisable universal forces as elementary 
(genuine) bosons. Corresponding to Weyl's lemma, Einstein's principle of 
equivalence holds both for the Fermi and for the Bose particles (Treder, 
1971, 1972). 

Therefore, it is physically reasonable to alter the general relativistic 
spinor calculus such that Weyl's lemma is no longer valid. Weyl himself 
has proposed such a modification in order to make the affine transport of  
fermions directly dependent on the structure of the matter fields. But the 
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violation of Weyl's lemma makes it necessary to consider explicitly 
postulates being satisfied identically in case of the validity of Weyl's 
lemma. Especially, the meaning of the Lorentz covariant formulation of 
the spinor equations depends on the form of the special relativistic equations 
one starts from. 

IfWeyl's lemma is not valid for the metric spinors, i.e. if we have (Treder, 
1972) 

- Z~u,z r 0 

then the Hermitian symmetry of the spinor field equations is no longer 
directly compatible with the rule: 'The Einsteinian gravitation field is 
coupled to Fermi fields by means of general covariant writing of the Weyl 
or the Dirac equations, respectively' (Treder, 1971). 

Indeed, for example, the Lagrangian 

L = q~ ~.~ ~o",,l (1) 

is no longer equivalent to the complex conjugate Langrangian 

L* = ~o v o-z~v ~o~ ~r~ (1 a) 

if Weyl's lemma is not valid; in this case L and L* are no longer Hermitian 
symmetric up to a four-divergence. Instead, we have 

~o~ ~ z  cp",~ - z}(cp ~ ~o" ~.~) ;t = �89 ~ z  ~o" ~ - ~o" ~'.~ ~o ~,1) - �89 ~o ~ ~r~.~ ,~ 
(2) 

From (1) one obtains the equations 

6L 
- ( q ~  a~.~)~,~ = 0 ( 3 a )  

6cp" 
and 

6L 
6q~ - al.~ q~" ill = 0 (3b) 

being only compatible if the contracted Weyl lemma given by 

d . ~  i~ = IY.~l = 0 (4)  

is valid. Assuming the validity of (4), (1) and (la) are equivalent because 
they are Hermitian up to a divergence. 

On the other hand, when starting from the Hermitian symmetric 
Lagrangian (Wentzel, 1949), 

L = �89 + L*) 
= �89 ~ l  q ~ , l  - ~o" ~% ~o ~ ~) (5)  

we no longer obtain the covariant Weyl equation, but instead of the Weyl 
equation we obtain the equations 

~L 
- - = _ _ O . 1  . " 1 Z q~* 0 (6a) ~ p U  gV q)V ill - -  gO" /l~ II I = 
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and 

"Z TM tt~, IIl W 

Only if the contracted Weyl lemma (4) is valid, (6a) and (6b) are again 
identical with the covariant Weyl equations. 

Let us consider now, according to Weyl's proposal, the spinor affinities 
A'a, and Aq~, as independent field functions appearing additionally to the 
metric and the metric spinors a*~,~(x*). Then the Hermitian symmetric 
general relativistic Lagrangian density 

( ix 
II/ 

(R is the Riemannian curvature scalar) provides spinor affinities which 
satisfy the contracted Weyl lemma (4), Indeed, for A"~ and Aa~, 
respectively, follow the field equations (Weyl, 1950) : 

1 fi~2 i~: 
~/-g  f A -2 a~"~ ~p~' ~~ (8a) 

and 
1 ~ i~: q~V 

~v/-g 6A* 2 ak'o cpa (8b) 

respectively. On the other hand, starting from (1) and (la), i.e. starting 
from the Lagrangian densities, 

s  = ~/(_g) ( -R  + itc~o ~ a~.~ ~p",, l) (9a) 
and 

5r = ~/(-g) ( -R  - i~c~o * a '~  ~o~ ~,,) (9b) 

respectively, the field equations 

1 6 N  
"v/-g AO - itca~"~ cf  (p~ (10a) 

and 
1 ~ 

v ' - g6A*  i~:ak~~176 (10b) 

result. 
It is seen that the vanishing terms on the right sides of (8) and (10), 

respectively, corresponds with the validity of Weyl's lemma. However, the 
contracted lemma (4) is valid for A"** and A~t in consequence of the field 
equations (8) and (10): 

U,~t = const. (az~ alB~ q~ ~o ~ -- a ~  a~) q~ ~o~) 
= const. (7,~ ~'~ ~ oa ~ o~ -- ~ ?~ q~ ~o~) = 0 (11) 

(?~ is the metric tensor of the spinor space.) By this (10a) and (10b) become 
compatible with each other and become equivalent to the Lagrangian (7). 
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In addition we mention that, since generally the general spinor transport 
is not metrical, it makes a difference whether one writes the Lagrangian in 
the form (7) or as 

itc 
L~e, = - R  + - -  (q~0 ~ I,~ - cplt ak "v ~0~ ,, ,) gU (12) 

2 

F r o m  0 2 )  it follows 

1 6 M  i x  l,~ 
v ' - g  6 A = 2 trt " ~o) ~o, gk, (13a) 

and 
1 3~  itca aa . . . . .  kt 

.v,_g6A , =  ~ t v'Bv'a~ (13b) 

respectively. The contracted Weyl lemma follows from (13a, b), too. 
In order to discuss the generalisation (4) of  Weyl's lemma in more detail, 

we consider a general mathematical way of  looking at the meaning of 
Weyl's lemma. 

For  this end, we turn to the investigation of the transport of tensorial 
quantities formed by fusion of spinors. We write 

O'i/t0[i ! = 2il1~l (14) 

where aiu0 is given by a~,0 = hiaaAlt o (aaltO are the Pauli-spin-matrices). We 
now treat the index combination (/~) as one index with respect to the 
transport, also. Therefore, we postulate the covariant constancy of the 
Pauli-spin-matrices: 

aAu*,l = a.,~ u~ Jit = 0 ( 1 5 )  

This lemma connects the Lorentz covariant derivatives with the spinor 
transport. We have 

(h~A aauo)lit = o'AIto hta n t = Xiltol 
= o'alt0 2;ia, (16) 

where 
hiA I[ l ~ ~iAl 

The meaning of  Weyl's lemma written in the form (Treder, 1972) 

hia,l = 0 

is discussed now in terms of the mathematics of fibre bundle theory. We 
start by considering the tangent bundle T(V4) over V,. T(V4) is the bundle 
associated with L(V4) with standard fibre R" where L(V4) is the principal 
fibre bundle of linear frames.t 

Now it is known how a connection can be defined in a vector bundle.:~ 
In the special case of a tangent bundle T(V,O a connection F is called a 
linear connection over the manifold V4. 

t R" is the vector space of all 4-tuples (~a . . . . .  ~,); ~1 . . . . .  ~4 are real numbers. 
:~ See, for example, Kobayashi & Nomizu (1963). 
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To the transformation (x ~, xAl) -+ (X v, X#') of the bundle coordinates 
there corresponds the following transformation of the local components 
LJ~ of the connection F: 

OXl A'  L f f v  = ~xi,  coa (-og, Lat  + o~,~" ~o~, i, (17) 

Here Ox~/Ox v corresponds to the transformation x ~ -+ x v and wa a' (with 
a, a = 6~') to the transformation Xi 4 ~ X~'. (O A s B , 

Using in T(V4)  natural bundle coordinates X~ one obtains 

co~'  = o~"." = ~ x " ' / ~ x  ~ 

and (17) reduces to the transformation law of  a linear connection over V, 
under coordinate transformations: 

F~,;v Ox~ Oxk OxV OxV 02 x t  
Ox v Ox k, Ox i F~l + Ox t Ox k, Ox v (18) 

On the other hand, for x ~ = 6i, x ~' from (17) one obtains the transformation 
law of the Lorentz connection: 

Li f t  .A' .B . a  A' A (19) : t.O A tOB, I~Bt  "~- CO A (.OB',l 

Let us now consider a transformation X f  a k (with h• = h k X l GL(4,R)) of 
the bundle coordinates. According to (17), then the following transforma- 
tion F~l --~ F~t of the local components of  F is associated with i t t :  

L A  _ _ l ,  A l , , m l - k  A m (20) 
e l  - -  "'k " B  ~rn t  + h m  hB.t 

- -  .4 m 
- hmhB; t 

This means that LJi and F~t are local components of the connection F only 
with respect to different bundle coordinates. From (20) one gets the 
components F ~  expressed by L~,A h,,,A and h mR,t, 

Fkml = l,k 1,B 1- A I.B la' (21) *tA t~m X-'Bi-- t tm I~B, l 

By multiplication of (20) by h] it follows from (20) 
r A r 

h ~ l l t  ~ h B , t  + F',,a h~ -- Lnl ha = 0 

Defining for mixed quantities Tat the general covariant derivative 

Tat ,,i = Ta,.l -- F~t Tak -- L]f  T., (22) 

where F~i and Li t  are the local components of one and the same connection 
F of T(V.), Weyl's lemma is automatically fulfilled; it is identical with the 
transformation law (20) and (21), respectively. 

Let us assume now that, instead of Weyl's lemma, the relation 

h~,tt = 27~t ~ 0 (23) 

holds. This means that two different linear connections F and/~ are defined 
in the bundle; the derivative in (23) is formed by means of the components 

I" The formulae (18)-(20) follow from the general transformation law of F given in 
Kobayashi & Nomizu (1963), for example, by fixation of the bundle coordinates. 
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- i  (F~a, L,~z ) or (Fkt, L],). On the other hand, defining the derivative in (23), 
as suggested by the fibre bundle formalism, by means of (F~z, L~l) or 

--I 
(Fk , ,  L ~ l )  Weyl's lemma is again valid, as we have seen above. 

But starting from (23) and assuming, accordingly, that the derivative in 
(23) is formed by means of F~a and Lit ,  i.e., starting from 

i _ ~ r i  ~m T B  h i _ r i  (23a) 
h A l l  I ~ h A ,  l "~- "t m l  ~ A  - - ' t " A l  "tB - -  ~'~A1 

one obtains, instead of (20), 
- c _  ~ ,, c ~ c i ~ (24) A A l  - -  Fr ,  t h A h ~  + hA, lh~  - 2 A l h i  

From (24) it follows by virtue of (21): 

/~z F~t , A (25) = - S a l  ht: 
Assuming now that 

r h {h}= ' o '"~- - gt:,,~) -~,~ \ ,Smt: ,  t "~- g l m ,  t: 

we can say that Ricci's lemma does not hold for the derivative ' ; / '  which 
is formed by means of/~,t. Accordingly, the contracted Weyl lemma can 
be interpreted as follows. 

According to Weyl, the derivatives 'Ill' appearing in spinor equations are 
to be defined by means of ({]a}, L~I); especially, here {~a} determines the 
transport of genuine tensors. But to obtain a general duality between the 
Lorentz covariant and the coordinate covariant representation of tensorial 
quantities formed by spinors, one ought to define the derivatives through 
( /~ ,  L~l); only then is Weyl's lemma (being necessary for this duality) 
satisfied. But, in this case, the non-genuine tensors which are formed by 
fusion of spinors are transported in a different way than genuine tensors; 
for instance, it yields 

Tt ; i  ---- T t , i  + Tt: Ftt:~ 

= T1;f - -  SZA~ hat: Tt: (26) 

Now we have seen above that, for reasons of compatibility, the con- 
tracted Weyl lemma 

l l a~ll I = 2~  t = 0 (27a) 
and 

h~,,z = S], = 0 (27b) 

respectively, must be valid in a spinor field theory. With (27b) and (25) it 
follows that 

Fh = (h} 
and hence we obtain 

T~;~ = Tl;~ (28) 

From (28) follows that the continuity equationt 

(cP ~ a t~  r = (~ ~ az.~ ~o"):~ = 0 (29) 

"t" The derivatives in (3a), (3b), and thus in (29), are defined by (23), according to Weyl. 
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resulting (3a) and (3b) is also valid with regard to the derivative by means 
of -~ ~kl~ 

(~o~ G ~  ~0~);~ = o (30) 

This means that the contracted Weyl lemma (27) just 'saves' the duality 
between the Lorentz covariant and the Einsteinian coordinate covariant 
representation of the equation of continuity following by fusion from the 
Weyl spinor field equations. Asking now this duality for all tensor equations 
formed by fusion one is again led to Weyl's lemma itself; then it is im- 
possible to distinguish between 'genuine' and 'fusion' matter. 

Indeed, only demanding the contracted Weyl lemma we have in general 

Tik;t~ 0 (31) 
and 

Tik;k ~ Tik;k (32) 

From (31) and (32) it follows that, in case of the violation of Weyl's lemma, 
the principle of equivalence holds only for one sort of matter. According 
to Weyl, one could tend to abandon the equivalence principle for spinorial 
matter because, for this matter (additional to the gravitation), a further 
universal interaction could exist depending on the spinorial matter only. 
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